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Chapter 12
Frequency Analysis of Streamflow Data

12-1. General

Frequency analysis of recorded streamflow data is an
important flood-runoff analysis tool. This chapter
describes the role of frequency analysis and summarizes
the technical procedures. EM 1110-2-1415 describes the
procedures in greater detail.

a. Role of frequency analysis.

(1) The traditional solution to water-resource plan-
ning, designing, or operating problems is a deterministic
solution. With a deterministic solution, a critical hydro-
meteorological event is selected. This event is designated
the design event. Plans, designs, or operating policies are
selected to accommodate that design event. For example,
the maximum discharge observed in the last 40 years may
be designated the design event. A channel modification
may be designed to pass, without damage, this design
event. If this design event is not exceeded in the next
1,000 years, the design may not be justified. On the other
hand, if the discharge exceeds the design event 20 times
in the next 30 years, the channel modification may be
underdesigned.

(2) A probabilistic solution employs principles of
statistics to quantify the risk that various hydrometeoro-
logical events will be exceeded. Risk is quantified in
terms of probability. The greater the risk, the greater the
probability. If an event is certain to occur, its probability
is 1.00. If an event is impossible, its probability is 0.00.
For flood-runoff analyses, the probability of exceedance is
usually the primary interest. This is a measure of the risk
that discharge will exceed a specified value. Decisions
are taken so that the risk of exceedance is acceptable.
For example, the channel modification described above
could be designed for a discharge magnitude with an
annual exceedance probability of 0.01. In that case, the
risk is known and is accounted for explicitly in the deci-
sion making.

b. Definition of frequency analysis.

(1) The objective of streamflow frequency analysis is
to infer the probability of exceedance of all possible dis-
charge values (the parent population) from observed dis-
charge values (a sample of the parent population). This
process is accomplished by selecting a statistical model
that represents the relationship of discharge magnitude

and exceedance probability for the parent population. The
parameters of the models are estimated from the sample.
With the calibrated model, the hydrologic engineer can
predict the probability of exceedance for a specified mag-
nitude or the magnitude with specified exceedance proba-
bility. This magnitude is referred to as a quantile.

(2) For convenience, a statistical model may be
displayed as a frequency curve. Figure 12-1 is an exam-
ple of a frequency curve. The magnitude of the event is
the ordinate. Probability of exceedance is the abscissa.
For hydrologic engineering studies, the abscissa
commonly shows “percent chance exceedance.” This is
exceedance probability multiplied by 100.

(3) In some sense, frequency analysis is a model-
fitting problem similar to the precipitation-runoff analysis
problem described in Chapter 8. In both cases, a model
must be selected to describe the desired relationship, and
the model must be calibrated with observed data.

c. Summary of streamflow frequency analysis techni-
ques. Techniques for selecting and calibrating streamflow
frequency models may be categorized as graphical or
numerical. With graphical techniques, historical observa-
tions are plotted on specialized graph paper and the
curves are fitted by visual inspection. Numerical tech-
niques infer the characteristics of the model from statistics
of the historical observations. The procedures for both
graphical and numerical analysis are presented in detail in
EM 1110-2-1415 and are summarized herein for ready
reference.

12-2. Frequency Analysis Concepts

a. Data requirements. Statistical models of stream-
flow frequency are established by analyzing a sample of
the variable of interest. For example, to establish a statis-
tical model of annual peak discharge, the sample will be a
series of annual peaks observed throughout time. The
procedures of statistical analysis require the following of
any time series used in frequency analysis:

(1) Data must be homogeneous. That is, the data
must represent measurements of the same aspect of each
event. For example, daily discharge observations should
not be combined with peak discharge observations.
Furthermore, all sample points must be drawn from the
same parent population. For example, rain-flood data and
snowmelt-flood data should not be combined if they can
be identified and analyzed separately. Likewise, dis-
charge data observed after development upstream should
not be combined with predevelopment data.
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Figure 12-1. Frequency curve example

(2) Data must be spatially consistent. All data should
be observed at the same location. Data observed at
different locations may be used to develop probability
estimates. However, these data must be adjusted to repre-
sent conditions at a common location.

(3) Time series must be continuous. Statistical analy-
sis procedures require an uninterrupted series. If observa-
tions are missing, the missing values must be estimated,
or techniques for analysis of broken records must be used.

b. Probability estimates from historical data.

(1) Streamflow probability is estimated from analysis
of past occurrence. The simplest model of the relation-
ship of streamflow magnitude and probability is a relative
frequency model. This model estimates the probability of
exceeding a specified magnitude as the fraction of time
the magnitude was exceeded historically. For example, if
the mean daily discharge at a given location exceeds

80 cfs in 6,015 of 8,766 days, the relative frequency is
0.68. The estimated probability of exceedance of 80 cfs
is 0.68.

(2) Figure 12-2 is a graphical representation of the
relative frequency models of mean daily flow in Fishkill
Creek at Beacon, NY. Such a plot is commonly referred
to as a duration curve. The abscissa of this plot shows
“percent of time exceeded.” This equals relative
frequency multiplied by 100, so it is consistent with the
term “percent chance exceedance.”

(3) The reliability of a relative frequency model
improves as the sample size increases; with an infinite
sample size, relative frequency exactly equals the proba-
bility. Unfortunately, sample sizes available for stream-
flow frequency analysis are small by scientific standards.
Thus, relative frequency generally is not a reliable estima-
tor of probability for hydrologic engineering purposes.
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Figure 12-2. Graphical representation of relative frequency model

(4) The alternative to the empirical relative frequency
model is a theoretical frequency model. With a theo-
retical model, the relationship of magnitude and proba-
bility for the parent population is hypothesized. The rela-
tionship is represented by a frequency distribution. A
cumulative frequency distribution is an equation that
defines probability of exceedance as a function of speci-
fied magnitude and one or more parameters. An inverse
distribution defines magnitude as a function of specified
probability and one or more parameters.

c. Distribution selection and parameter estimation.
In certain scientific applications, one distribution or
another may be indicated by the phenomena of interest.
This is not so in hydrologic engineering applications.
Instead, a frequency distribution is selected because it
models well the data that are observed. The parameters
for the model are selected to optimize the fit. A graphical
or numerical technique can be used to identify the appro-
priate distribution and to estimate the parameters.

12-3. Graphical Techniques

Some of the early and simplest methods of frequency
analysis were graphical techniques. These techniques
permit inference of the parent population characteristics
with a plot of observed magnitude versus estimated

exceedance probability of that data. If a best-fit line is
drawn on the plot, the probability of exceeding various
magnitudes can be estimated. Also, any desired quantiles
can be estimated. Graphical representations also provide
a useful check of the adequacy of a hypothesized
distribution.

a. Plotting-position estimates of probability.

(1) Graphical techniques rely on plotting positions to
estimate exceedance probability of observed events. The
median plotting position estimates the exceedance proba-
bility as:

(12-1)Pm

(m 0.3)
(N 0.4)

where:

Pm = exceedance probability estimate for themth
largest event

m = the order number of the event

N = the number of events
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For example, to estimate annual exceedance probability of
annual maximum discharge,N = the number of years of
data. To express the results as percent-chance exceed-
ance, the results of Equation 12-1 are multiplied by 100.

(2) Table 12-1 shows plotting positions for annual
peak discharge on Fishkill Creek. Column 4 of the table
shows the discharge values in the sequence of occurrence.
Column 7 shows these same discharge values arranged in
order of magnitude. Column 5 is the order number of
each event. Column 8 shows the plotting position. These
plotting positions are values computed with Equation 12-1
and multiplied by 100. The values in columns 7 and 8
thus are an estimate of the peak-discharge frequency
distribution.

b. Display and use of estimated frequency curve.

(1) The estimated frequency distribution is displayed
on a grid with the magnitude of the event as the ordinate
and probability of exceedance (or percent-chance exceed-
ance) as the abscissa. The plot thus provides a useful tool
for estimating quantiles or exceedance probabilities.
Specialized plotting grids are available for the display.
These grids are constructed with the abscissa scaled so a
selected frequency distribution plots as a straight line.
For example, a specialized grid was developed by Hazen
for the commonly used normal frequency distribution.

(2) The specialized normal-probability grid is a
useful tool for judging the appropriateness of the normal

Table 12-1
Annual Peaks, Sequential and Ordered with Plotting Positions (Fishkill Creek at Beacon, NY)

Events Analyzed Ordered Events

Mon
(1)

Day
(2)

Year
(3)

Flow, cfs
(4)

Rank
(5)

Water
Year
(6)

Flow, cfs
(7)

Median
Plot Pos
(8)

3 5 1945 2,290. 1 1955 8,800. 2.87

12 27 1945 1,470. 2 1956 8,280. 6.97

3 15 1947 2,220. 3 1961 4,340. 11.07

3 18 1948 2,970. 4 1968 3,630. 15.16

1 1 1949 3,020. 5 1953 3,220. 19.26

3 9 1950 1,210. 6 1952 3,170. 23.36

4 1 1951 2,490. 7 1962 3,060. 27.46

3 12 1952 3,170. 8 1949 3,020. 31.56

1 25 1953 3,220. 9 1948 2,970. 35.66

9 13 1954 1,760. 10 1958 2,500. 39.75

8 20 1955 8,800. 11 1951 2,490. 43.85

10 16 1955 8,280. 12 1945 2,290. 47.95

4 10 1957 1,310. 13 1947 2,220. 52.05

12 21 1957 2,500. 14 1960 2,140. 56.15

2 11 1959 1,960. 15 1059 1,960. 60.25

4 6 1960 2,140. 16 1963 1,780. 64.34

2 26 1961 4,340. 17 1954 1,760. 68.44

3 13 1962 3,060. 18 1967 1,580. 72.54

3 28 1963 1,780. 19 1946 1,470. 76.64

1 26 1964 1,380. 20 1964 1,380. 80.74

2 9 1965 980. 21 1957 1,310. 84.84

2 15 1966 1,040. 22 1950 1,210. 88.93

3 30 1967 1,580. 23 1966 1,040. 93.03

3 19 1968 3,630. 24 1965 980. 97.13
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distribution as a model of the parent population. If data
drawn from a normally distributed parent population are
assigned plotting positions using Equation 12-1 and are
plotted on Hazen’s grid, the points will fall approximately
on a straight line. If the points do not, then either the
sample was drawn from a population with a different dis-
tribution or sampling variation yielded a nonrepresentative
sample.

(3) A specialized plotting grid has been developed
also for another commonly used frequency distribution,
the log-normal distribution. Figure 12-3 is an example of
such a grid. The values from columns 7 and 8 of
Table 12-1 are plotted on this grid, and a frequency curve
is fitted. If the data are truly drawn from the distribution
of a log-normal parent population, the points will fall on a

straight line. The Fishkill Creek data, shown by
Figure 12-3, do not fall on a straight line, so the assump-
tion that the parent population is a log-normal distribution
is suspect.

12-4. Numerical Techniques

Numerical techniques define the relationship between
streamflow magnitude and probability with analytical
tools, instead of the graphical tools.

a. Steps of numerical techniques.With numerical
techniques, the following general steps are used to derive
a frequency curve to represent the population (McCuen
and Snyder 1986):

Figure 12-3. Log-normal probability grid
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(1) Select a candidate frequency model of the parent
population. Three distributions are commonly used for
frequency analysis of hydrometeorological data: the nor-
mal distribution, the log-normal distribution, and the log
Pearson type III distribution.

(2) Obtain a sample.

(3) Use the sample to estimate the parameters of the
model identified in step 1.

(4) Use the model and the parameters to estimate
quantiles to construct the frequency curve that represents
the parent population.

b. Numerical parameter estimation.

(1) Parameters of a statistical model are commonly
estimated from a sample with method-of-moments estima-
tors. The method-of-moments parameter estimators are
developed from the following assumptions:

(a) The streamflow-probability relationship of the
parent population can be represented with a selected dis-
tribution. The moments (derivatives) of the distribution
equation can be determined with calculus. One moment
is determined for each parameter of the distribution. The
resulting expressions are equations in terms of the param-
eters of the distribution.

(b) Moments of a sample of the parent population can
be computed numerically. The first moment is the mean
of the sample; the second moment is the variance; the
third moment is the sample skew. Other moments can be
found if the distribution selected has more than three
parameters.

(c) The numerical moments of the sample are the best
estimates of the moments of the parent population. This
assumption permits development of a set of simultaneous
equations. The distribution parameters are unknown in
the equations. Solution yields estimates of the
parameters.

(2) When the parameters of the distribution are esti-
mated, the inverse distribution defines the quantiles of the
frequency curve. Chow (1951) showed that with the
method-of-moments estimates, many inverse distributions
commonly used in hydrologic engineering could be writ-
ten in the following general form:

(12-2)Qp Q KpS

where:

Qp = the quantile with specified exceedance
probability p

Q = the sample mean

S = the sample standard deviation

Kp = a frequency factor

The sample mean and standard deviation are computed
with the following equations:

(12-3)Q
Qi

N

(12-4)
S











(Qi Q )2

(N 1)

0.5

where:

Qi = observed eventi

N = number of events in sample

(3) The frequency factor in Equation 12-2 depends
on the distribution selected. It is a function of the speci-
fied exceedance probability and, in some cases, other
population parameters. The frequency factor function can
be tabulated or expressed in mathematical terms. For
example, normal-distribution frequency factors corre-
sponding to the exceedance probabilityp (0 < p < 0.5)
can be approximated with the following equations
(Abramowitz and Stegun 1965):

Kp

w










2.515517 0.802853w 0.010328w 2

1 1.432788w 0.189269w 2 0.001308w 3

(12-5)
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(12-6)
w











ln










1

P 2

0.5

where:

w = an intermediate variable, ifp > 0.5, (1 - p) is
used in Equation 12-6, and the computed value
of Kp is multiplied by -1.

(4) For the log-normal distribution, Equation 12-2 is
written as:

(12-7)Xp X KpS

where:

Xp = the logarithm ofQp, the desired quantile

X = mean of logarithms of sample

S = standard deviation of logarithms of sample

Kp = the frequency factor

This frequency factor is the same as that used for the
normal distribution. X and S are computed with the fol-
lowing equations:

(12-8)X
log Qi

N

(12-9)
S











(log Qi X )2

(N 1)

0.5

where:

Qi = observed peak annual discharge in yeari

N = number of years in sample

For the annual peak discharge values shown in
Table 12-1, these values are as follows:X = 3.3684, and
S = 0.2456.

c. Recommended procedure for annual maximum
discharge.

(1) The U.S. Water Resources Council (USWRC)
(1967, 1976, 1977) recommended the log Pearson type III
distribution for annual maximum streamflow frequency
studies. This recommendation is followed by USACE.
Current guidelines are presented in Bulletin 17B (USWRC
1981).

(2) The log Pearson type III distribution models the
frequency of logarithms of annual maximum discharge.
Using Chow’s (1951) format, the inverse log Pearson type
III distribution is

(12-10)Xp X KS

where:

Xp = the logarithm ofQp, the desired quantile

X = mean of logarithms of sample

S = standard deviation of logarithms of sample

K = the Pearson frequency factor

X andS are computed with the Equations 12-8 and 12-9.

(3) For this distribution, the frequency factorK is a
function of the specified probability and of the skew of
the logarithms of the sample. The skew,G, is computed
with the following equation:

(12-11)G
N (Xi X)3

(N 1) (N 2) S3

For the values of Table 12-1, the skew computed with
Equation 12-11 is 0.7300.

(4) The log Pearson type III frequency factors for
selected values of skew and exceedance probability are
tabulated in Bulletin 17B (USWRC 1981) and in
EM 1110-2-1415. Alternatively, an approximating
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function can be used. If the skew equals zero, the
Pearson frequency factors equal the normal distribution
factors. Otherwise, the following approximation sug-
gested by Kite (1977) can be used:

K Kp K 2
p k 








1
3

K 3
p 6Kp k 2 K 2

p 1 k 3

Kpk
4 








1
3

k 5~ (12 12)

wherek = G/6.

d. Analysis of special cases.

(1) In hydrologic engineering applications, frequency
analysis of annual maximum discharge is complicated by
special cases. These include broken records, incomplete
records, zero-flow years, outliers, historical data, and
small samples. Bulletin 17B provides guidance for deal-
ing with these cases.

(2) If 1 or more years of data are missing from a
time series of annual maximum discharge due to reasons
not related to flood magnitude, the record is broken. For
analysis, the record segments are combined, and the com-
bined record is analyzed as previously described.

(3) If data are missing because the events were too
large to record, too small to record, or the gauge was
destroyed by a large event, the record is incomplete. Any
missing large events should be estimated and the esti-
mates included in the time series. Missing small events
are treated with the conditional probability adjustment
recommended for zero-flow years.

(4) The log Pearson type III distribution is not suited
to analysis of series which include zero-flow years. If the
sample contains zero-flow years, the record is analyzed
using the conditional probability procedure. With this
procedure, the subseries of nonzero peaks is analyzed as
described previously. The resulting frequency curve is a
conditional frequency curve. The exceedance frequencies
from this curve are scaled by the relative frequency of
non-zero flow years. The log Pearson type III model
parameters are estimated for the upper portion of the
curve. With these parameters, a synthetic frequency curve
is developed. Paragraph 3-6 of EM 1110-2-1415
describes the procedure.

(5) An outlier is an observation that departs signifi-
cantly from the trend of the remaining data. Procedures
for treating outliers require hydrologic and mathematical
judgment. Bulletin 17B describes one procedure for
identifying high and low outliers and for censoring the
data set. High outliers are treated as historical data if
sufficient information is available. Low outliers are
treated as zero-flow years.

(6) Large floods outside the systematically recorded
time series may be used to extend that record. The proce-
dure recommended for analysis of these historical flows is
as follows:

(a) Assemble known historic peaks and determine
the historic record length.

(b) Censor the systematic record by deleting all
peaks less than the minimum historical peak. Estimate
the model parameters for the remaining record.

(c) Compute a weight with the following equation:

(12-13)W
(H Z)
(N L)

where:

W = the weight

H = number of years in historic record

Z = number of historic event

N = number of years in censored systematic record

L = number of zero-flow years, low outliers,
missing years excluded from systematic record

(d) Adjust the model parameters with this weight.
Equations for the adjustments are presented in Appendix 6
of Bulletin 17B (USWRC 1981). Compute the quantiles
with these modified parameters and Equation 12-10.

(7) Small samples adversely affect the reliability of
estimates of the skew. This parameter is difficult to esti-
mate accurately from a small sample. A more reliable
estimate is obtained by considering skew characteristics of
all available streamflow records in a large region. An
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adopted skew is computed as a weighted sum of this
regional skew and the skew computed with
Equation 12-11. The weights chosen are a function of the
sample skew of the logs, the sample record length, the
generalized skew, and the accuracy in developing the
generalized values. The generalized skew can be deter-
mined from a map included in Bulletin 17B, or it can be
determined from detailed analyses if additional data are
available.

(8) The impact of uncertainty due to small sample
size can be quantified further with the expected
probability adjustment. This adjustment is based on the
argument that the x percent-chance discharge estimate
made with a given sample is approximately the median of
all estimates that would be made with successive samples
of the same size. However, the probability distribution of
the estimate is skewed, so the average of the samples
exceeds the median. The consequence of this is that if a
very large number of estimates of flood magnitude are
made over a region, more x percent-chance floods will
occur than expected on the average (Chow, Maidment,
and Mays 1988). For example, more “100-year floods”
will occur in the United States annually than expected.
Paragraph 3-4 of EM 1110-2-1415 describes how either
the probability associated with a specified magnitude or
the magnitude for a specified probability can be adjusted
to obtain a frequency curve with the expected number of
exceedances.

e. Verification of frequency estimates.

(1) The reliability of frequency estimates depends on
how well the proposed model represents the parent popu-
lation. The fit can be tested indirectly with a simple
graphical comparison of the fitted model and the sample
or with a more rigorous statistical test. The reliability can
also be illustrated with confidence limits.

(2) A graphical test provides a quick method for
verifying frequency estimates derived with numerical
procedures. The test is performed by plotting observed
magnitude versus plotting-position estimates of
exceedance probability. The postulated frequency curve
with best-estimate parameters is plotted on the same grid.
Goodness-of-fit is judged by inspection, as described
previously.

(3) Because of the complexity of the log Pearson type
III distribution, no single specialized plotting grid is
practical for this graphical test. Instead, the log-normal
grid is used to display data thought to be drawn from a
log Pearson type III distribution. The fit is judged by

inspection. Figure 12-4 illustrates this. The observed
peaks and plotting positions from columns 7 and 8 of
Table 12-1 are plotted here. Quantiles computed with
Equation 12-10 are plotted on the same grid. The
estimated values of the terms of Equation 12-5 are
X = 3.3684;S = 0.2456; andG = 0.700. The skew was
adjusted here with a regional skew. The computed fre-
quency curve fits well the plotted observations.

(4) Rigorous statistical tests permit quantitative
judgement of goodness of fit. These tests compare the
theoretical distribution with sample values of the relative
frequency or cumulative frequency function. For exam-
ple, the Kolmogorov-Smirnov test provides bounds within
which every observation should lie if the sample actually
is drawn from the assumed distribution. The test is con-
ducted as follows (Haan 1977):

(a) For each observation in the sample, determine
the relative exceedance frequency. This is given bym/N,
where m = the number of observations in the sample
greater than or equal to the observed magnitude, and
N = the number of observations.

(b) For each magnitude in the sample, determine the
theoretical exceedance frequency using the hypothesized
model and the best estimates of the parameters.

(c) For each observation, compute the difference in
the relative exceedance frequency and the theoretical
exceedance frequency. Determine the maximum differ-
ence for the sample.

(d) Select an acceptable significance level. This is a
measure of the probability that the sample is not drawn
from the candidate distribution. Values of 0.05 and 0.01
are common. Determine the corresponding Kolmogorov-
Smirnov test statistic. This statistic is a function of the
sample size and the significance level. Test statistics are
tabulated or can be computed with the following equation
(Loucks, Stedinger, and Harth 1981):

(12-14)

C











n 0.5 0.12










0.11

N 0.5

where:

C = 1.358 for significance level 0.05

C = 1.628 for significance level 0.01
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Figure 12-4. Plot for verification

(e) Compare the maximum difference determined in
step c with the test statistic found in step d. If the value
in step c exceeds the test statistic, the hypothesized distri-
bution cannot be accepted with the specified significance
level.

(5) The reliability of a computed frequency curve can
be illustrated conveniently by confidence limits plotted on
the frequency grid. Confidence limits are established
considering the uncertainty in estimating population mean
and standard deviation from a small sample. For con-
venience, Appendix 9 of Bulletin 17B (USWRC 1981)
includes a table of frequency factors that permit definition
of 1 percent to 99 percent confidence limits. These fre-
quency factors are a function of specified exceedance
probability and sample size. As the sample size increases,
the limits narrow, indicating increased reliability.

(6) Figure 12-5 shows the 5 and 95 percent confi-
dence limits for the Fishkill Creek frequency curve. The

probability is 0.05 that the true quantile for a selected
exceedance probability will exceed the value shown on
the 5 percent curve. The probability is 0.95 that the true
quantile will exceed the 95 percent-curve value and only
0.05 that it will be less than the 95 percent curve.

12-5. Special Considerations

a. Mixed populations.In certain cases, observed
streamflow is thought to be the result of two or more
independent hydrometeorological conditions. The sample
is referred to as a mixed-population sample. For example,
the spring streamflow in the Sacramento River, CA, is the
result of both rainfall and snowmelt. For these cases, the
data are segregated by cause prior to analysis, if possible.
Each set can be analyzed separately to determine the
appropriate distribution and parameters. The resulting
frequency curves are then combined using the following
equation to determine probability of union:
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Figure 12-5. Frequency curve with confidence limits

(12-5)Pc P1 P2 P1P2

where:

Pc = annual exceedance probability of combined
populations for a selected quantile

P1 = annual exceedance probability of same
magnitude for sample 1

P2 = annual exceedance probability of same
magnitude for sample 2

This assumes that the series are independent. Otherwise,
coincident frequency analysis must be used.

b. Coincident frequency analysis.In some planning,
designing, or operating problems, the hydrometeorological
event of interest is a function of two or more random
hydrometeorological events.

(1) For example, discharge at the confluence of two
streams is a function of the coincident discharge in the
tributary streams. The objective of coincident frequency
analysis is to estimate the frequency distribution of the
result if the frequency distributions of the components are
known. The specific technique used depends on the
mathematical form of the function relating the variables.
Benjamin and Cornell (1970) describe a variety of solu-
tions, including analytical closed-form solutions and
Monte Carlo simulation.

(2) In hydrologic engineering, the variable of interest
often is the sum of components. In that case, the fre-
quency distribution of the sum can be found through
conditional probability concepts. For illustration, consider
the total discharge downstream of a confluence,QT. This
is computed as the sum of tributary dischargeQ1 and
tributary dischargeQ2. The frequency ofQ1 and Q2 are
established using procedures described previously.
Roughly speaking, the probability thatQT equals some
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specified value,qT, is proportional to the probability that
Q1 equals a specified value,q1, times a factor proportional
to the probability thatQ2 equalsqT - q1. This product is
summed over all possible values ofQ1. To develop a
frequency curve for the sum, the process is repeated for
all possible values ofQT. Chapter 11 of EM 1110-2-1415
presents a detailed example of coincident frequency analy-
sis.

c. Regional frequency analysis.

(1) Methods of frequency analysis described pre-
viously in this chapter apply to data collected at a single
site. If a large sample is available at that site, the result-
ing frequency analysis may be sufficiently reliable for
planning, designing, or operating civil-works projects.
However, samples commonly are small. In fact, it is not
unusual that risk information is required at sites for which
no data are available. Regional frequency analysis tech-
niques may be used to develop this information.

(2) Regional frequency analysis procedures relate
parameters of a streamflow-frequency model to catchment
characteristics. Briefly, the following general steps are
followed to derive such a relationship:

(a) Select long-record sites within the region, and
collect streamflow data for those sites.

(b) Select an appropriate distribution for the data, and
estimate the parameters using the procedures described
herein.

(c) Select catchment characteristics that should cor-
relate with the parameters. Measure or observe these
characteristics for the long-record sites. Typical charac-
teristics for streamflow frequency model parameters

include the following: contributing drainage area, stream
length, slope of catchment or main channel, surface stor-
age, mean annual rainfall, number of rainy days annually,
infiltration characteristics, and impervious area.

(d) Perform a regression analysis to establish predic-
tive equations. The dependent variables in the equations
are the frequency model parameters. The independent
variables are the catchment characteristics.

(3) EM 1110-2-1415 provides additional guidance in
establishing regional equations.

d. Frequency of other hydrometeorological phe-
nomena. The procedures described for discharge-
frequency analysis apply to analysis of other
hydrometeorological phenomena. The same general steps
presented in paragraph 12-4 are followed. For example, if
the variable of interest is streamflow volume, rather than
discharge, the time series will be a sequence of volumes
for a specified duration. The procedures for selecting,
calibrating, and verifying a frequency model are the same
as previously described.

e. Volume-frequency and precipitation-depth-dura-
tion-frequency analyses. These analyses present some
unique problems. Because of the small samples from
which parameters must be estimated, the set of frequency
curves for various durations may be inconsistent. For
example, the 1-day volume should not exceed the 3-day
volume for all probabilities. Yet, for a small sample, the
computed curves may not follow this rule. To overcome
this, the computed curves may be “smoothed,” adjusted
by inspection of plots. Alternatively, the statistical model
parameters can be adjusted to maintain consistency. Para-
graph 3-8c of EM 1110-2-1415 describes a typical
procedure.
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